No.2922
|
|
Âç³Ø¤Ç¿ô³ØÀ칶¤ÎÊý¤¤¤Þ¤»¤ó¤«¡©
by
̵²óÅú
from
̵²óÅú¡¡2008/02/23 03:16:06
¥«¥Ê¥À¤ÎÂç³Ø¤Ç¿ô³Ø¤Îñ°Ì¤ò¼è¤é¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¯¤Ê¤ê¤Þ¤·¤¿¡£
¼¡¤Îterm¤«¤é£±Ç¯¤Î´Ö¤Ë¿ô³Ø¤Ç£±£µ¡Á£±£¸Ã±°Ì¼èÆÀ¤·¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£
ÇùÁ³¤È¤·¤Æ¤·¤Þ¤¤¤Þ¤¹¤¬¡¢¥«¥Ê¥À¤Î¿ô³Ø¤Î¥ì¥Ù¥ë¤Ï¤É¤ÎÄøÅ٤ʤΤǤ·¤ç¤¦¤«¡£
¥³¡¼¥¹¤¬»Ï¤Þ¤ë¤Þ¤Ç¾¯¤·»þ´Ö¤¬¤¢¤ë¤Î¤Ç¡¢ÆüËܤι⹻¤Î¿ô³Ø¤òÉü½¬¤·¤Æ¤ª¤³¤¦¤È»×¤¦¤Î¤Ç¤¹¤¬¤½¤Î¾¤ËÆüËܤǤ·¤Æ¤ª¤±¤ë»ö¤¬¤¢¤ì¤Ð¥¢¥É¥Ð¥¤¥¹¤ª´ê¤¤¤·¤Þ¤¹¡£
|
|
|
|
|
|
Res.1 |
|
by
̵²óÅú
from
̵²óÅú¡¡2008/02/23 04:25:16
¥¯¥é¥¹¤Î̾¾Î¡Êprecalculus, calculus, linear analysis, differential equation¤Ê¤É¡Ë¤¬¤¢¤ì¤Ð¤â¤Ã¤È¿ô³ØÀ칶¤ÎÊý¤â¥¢¥É¥Ð¥¤¥¹¤·¤ä¤¹¤¤¤È»×¤¤¤Þ¤¹¡£
¤Á¤Ê¤ß¤Ëprecalculus¤Ï¹â¹»¤Î¿ô³Ø¡Ê1ǯ¡Ë¤Î´ðÁòòÀϤÈÎà»÷¤·¤Æ¤¤¤ë¤È»×¤¤¤Þ¤¹¡£
calculus¤ÏÈùʬÀÑʬÃæ¿´¡¢¤Ç¤·¤ç¤¦¤«¡£
linear analysis, differential equation¤Ï»ä¤Ï¼è¤Ã¤¿¤³¤È¤¬Ìµ¤¤¤Î¤Çʬ¤«¤ê¤Þ¤»¤ó¡£¤¹¤ß¤Þ¤»¤ó¡£¤¤Ã¤ÈÂç³Ø¥ì¥Ù¥ë¤¸¤ã¤Ê¤¤¤Ç¤·¤ç¤¦¤«¡©
precaluculus¤À¤Ã¤¿¤é¹â¹»¤Î¶µ²Ê½ñÉü½¬¤Ç¤À¤¤¤Ö´ª¤¬Ìá¤ë¤È»×¤¤¤Þ¤¹¡£¤Þ¤¿¡¢¤³¤Ã¤Á¤ÎÂç³Ø¤Î¿ô³Ø¤Ï¤½¤ó¤Ê¤ËÂçÊѤ¸¤ã¤Ê¤¤¤È»×¤¤¤Þ¤¹¡£ÆüËܤǤ½¤³¤½¤³ÊÙ¶¯¤¬¤Ç¤¤¿Êý¤Ê¤é¾¤ÎÀ¸Å̤ÎÂÕËý¤µ¤¬ÌܤËÉÕ¤¯¤Û¤É¤¸¤ã¤Ê¤¤¤Ç¤·¤ç¤¦¤«¡£
¤¿¤À¡¢±Ñ¸ì¤Ç¤Î¿ô³Øɽ¸½¤Ë´·¤ì¤Æ¤ª¤¯¤È¸å¤Ç³Ú¤«¤â¤·¤ì¤Þ¤»¤ó¤Í¡£±Ñ¸ì¤Ç¤Î¿ô³Ø¥Æ¥¥¹¥È¤Ê¤ó¤Æ¼ê¤ËÆþ¤ê¤Þ¤»¤ó¤«¡©¤¶¤Ã¤ÈÆɤó¤Ç¤ª¤¯¤È¿ô³ØÍѸ줬Ƭ¤ËÆþ¤ê¤Þ¤¹¡£
¡ã¿ô³ØÍѸì¡äcalculus¤Î¥Æ¥¥¹¥È¤è¤êÈ´¿è
To evaluate a definite integral by the fundamental theorem, an antiderivative "(integral mark)f(x) dx" is required. It was seen in Ch.29 that the substitution of a new veriable "u" may be useful in finding "(integral mark)f(x) dx. When the substitution is made in the definite integral too, the limits of integration "a" and "b" must be replaced by the corresponding values of "u".
¡¡
|
|
|
|
Res.2 |
|
by
¥È¥Ô¼ç
from
̵²óÅú¡¡2008/02/23 23:01:42
¥ì¥¹£±¤µ¤ó¡¢¥³¥á¥ó¥È¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤·¤¿¡£
¤Þ¤º£¶·î¤Ëcalculus¤Î£±¥ö·î½¸Ãæ¹ÖµÁ¤ò¼è¤ê¡¢¤½¤Î¸å¤Ï¼«Ê¬¤Ç¥³¡¼¥¹¤òÁªÂò¤·¤Æ¤¤¤¯¤è¤¦¤Ë¥¢¥É¥Ð¥¤¥¶¡¼¤ÎÊý¤«¤é¸À¤ï¤ì¤Æ¤¤¤Þ¤¹¡£
¤Þ¤º¤ÏÆüËܤι⹻¤Î¶µ²Ê½ñ¤Ç´ðÁòòÀÏ¡¢ÈùʬÀÑʬ¤ÎÉü½¬¤ò¤·¤Æ¤ª¤³¤¦¤È»×¤¤¤Þ¤¹¡£
¿ô³Ø¤Î±Ñ¸ìɽ¸½¤ÎÊÙ¶¯¤Ïɬ¿Ü¤Ç¤¹¤Í¡£
¤¢¤ê¤¬¤È¤¦¤´¤¶¤¤¤Þ¤·¤¿¡£
¡¡
|
|
|
|
Res.3 |
|
by
̵²óÅú
from
̵²óÅú¡¡2008/02/24 10:55:35
¥ì¥¹£±¤Ç¤¹¡£
calculus¡¢°ì¥ö·î¤Ç¤¹¤Í¡©°ì¥ö·î¥³¡¼¥¹¤Ï¤â¤Î¤¹¤´¤¯µÍ¤á¹þ¤ß¤Ê¤Î¤ÇÂçÊѤÀ¤È»×¤¤¤Þ¤¹¤¬¤¬¤ó¤Ð¤Ã¤Æ¤¯¤À¤µ¤¤¡£Ëè½µ¥Æ¥¹¥È¤¬¤¢¤ê¤Þ¤¹¤è¤Í¡¢¤¤Ã¤È¡£
¾ðÊó¤¬Ìò¤ËΩ¤Ã¤¿¤è¤¦¤Ç´ò¤·¤¤¤Ç¤¹¡£¤¬¤ó¤Ð¤Ã¤Æ¤¯¤À¤µ¤¤¡£
¡¡
|
|
|
|
Res.4 |
|
by
̵²óÅú
from
̵²óÅú¡¡2008/03/16 20:39:32
Êؾè¤Ê¤ó¤Ç¤¹¤¬¼ÁÌ䤵¤»¤Æ¤¯¤À¤µ¤¤¡£
¿§¡¹Çº¤ó¤ÀËö¥Þ¥¤¥Ê¡¼¤Ç¿ô³Ø¤ò¼è¤ë»ö¤Ë¤·¤Þ¤·¤¿¡£
Math100, precalculus, calculus, geometry, vector geometry, finite math ¤È¼è¤Ã¤Æ¹Ô¤«¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¤¬ÆüËܤǤϥ»¥ó¥¿¡¼»î¸³¤ò¼õ¤±¤ëÄøÅÙ¤·¤«¿ô³Ø¤ÏÊÙ¶¯¤·¤¿»ö¤¬¤¢¤ê¤Þ¤»¤ó¡£
¼«Ê¬¤Î¥³¡¼¥¹¤Ï£¹·î¤«¤é¤Ë¤Ê¤ê¤Þ¤¹¤¬¡¢¤½¤ì¤Þ¤Ç¹â¹»¤Î¶µ²Ê½ñ¤ÎÉü½¬ÄøÅÙ¤ÇÂç¾æÉפǤ·¤ç¤¦¤«¡£
Tutor ¤Ë¤Ä¤¤¤Æ¤â¤é¤Ã¤ÆÀè¼è¤êÊÙ¶¯¤·¤Æ¤ª¤¤¤¿Êý¤¬Îɤ¤¤Î¤«Ì¤¤Ãæ¤Ç¤¹¡£
¤Þ¤¿¿ô³Ø¤ÎÀìÌçÍѸì¤Ï¤½¤ÎÅÔÅÙÊÙ¶¯¤·¤Æ¹Ô¤¯ÄøÅÙ¤ÇÂç¾æÉפǤ·¤ç¤¦¤«¡£
¼ÁÌä¤Ð¤«¤ê¤Ç¥¹¥ß¥Þ¥»¥ó¤¬¡¢¤É¤Ê¤«¤¿¤´Â¸ÃΤÎÊý¶µ¤¨¤Æ¤¯¤À¤µ¤¤¡£
¡¡
|
|
|
|
Res.5 |
|
by
̵²óÅú
from
̵²óÅú¡¡2008/03/16 22:10:40
´ðËܤÎmath100¤«¤é¼è¤ë¤ó¤Ç¤·¤¿¤é¡¢¹ÖµÁʹ¤¯¤À¤±¤Ç¤â¡Ê¤È¸À¤¦¤è¤êʹ¤«¤Ê¤¯¤Æ¤â¡ËÉáÄ̤ËÎɤ¤À®ÀÓ¤ò¼è¤ì¤ë¤Ç¤·¤ç¤¦¡£
´üËö»î¸³¤Ê¤ó¤Æ¤Û¤ÜËè²ó»÷¤¿¤è¤¦¤ÊÌäÂê¤Ð¤«¤ê½Ð¤·¤Æ¤ë¤«¤é²áµîÌ䤹¤ì¤Ð³Ú¾¡¤Ç¤¹¤·¡£
UBC¤Îmath100¤Î²áµîÌ䤬
http://www.math.ubc.ca/~gupta/m100-180_common/exams.html
¤Ë½Ð¤Æ¤Þ¤¹¡£ÆüËܤǤϹ⹻¤Ç¤É¤ó¤Ê»ö¤ò½¬¤Ã¤Æ¤¤¤ë¤«ÃΤê¤Þ¤»¤ó¤¬¡¢Â¿Ê¬¹â¹»2ǯ¤¢¤¿¤ê¤Ç¤¹¤ë¤â¤Î¤Ç¤Ï¤Ê¤¤¤Ç¤·¤ç¤¦¤«¡£
¡¡
|
|
|
|
Res.6 |
|
by
Res4
from
̵²óÅú¡¡2008/03/17 09:31:36
Res5¤µ¤ó¡¢²áµîÌä¤Î¾ðÊ󤢤꤬¤È¤¦¤´¤¶¤¤¤Þ¤¹¡£
ÆüËܤι⹻¤Î¿ôµA ¿ô¶B¤¢¤¿¤ê¤ÎÊÙ¶¯¤ò¤·¤Æ¤ª¤±¤Ð³Ú¤½¤¦¤Ç¤¹¡£
¤È¤Æ¤â»²¹Í¤Ë¤Ê¤ë¾ðÊ󤢤꤬¤È¤¦¤´¤¶¤¤¤Þ¤·¤¿¡£
¡¡
|